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Electrophoresis of electrically neutral porous spheres induced by selective affinity of ions
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I investigate the possibility that electrically neutral porous spheres electrophorese in electrolyte solutions with
asymmetric affinity of ions to spheres on the basis of electrohydrodynamics and the Poisson–Boltzmann and
Debye–Bueche–Brinkman theories. Assuming a weak electric field and ignoring the double-layer polarization, I
obtain analytical expressions for electrostatic potential, electrophoretic mobility, and flow field. In the equilibrium
state, the Galvani potential forms across the interface of the spheres. Under a weak electric field, the spheres
show finite mobility with the same sign as the Galvani potential. When the radius of the spheres is significantly
larger than the Debye and hydrodynamic screening length, the mobility monotonically increases with increasing
salinity.
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I. INTRODUCTION

Electrophoresis of charged colloids and polyelectrolytes
has been studied theoretically and experimentally for several
years [1–5]. Electrophoresis is employed in numerous engi-
neering applications such as the separation of polyelectrolytes
and coating by electrophoretic decomposition. Smoluchowski
presented the most-well-known model. He argued that the
mobility of a charged spherical colloid is given by μ =
εζ/(4πη) in the thin-double-layer limit, where μ is the
mobility, ε is the dielectric constant of the solutions, ζ is the
electrostatic potential at slip surfaces, and η is the viscosity
of the solutions [6]. Later, Henry pointed out the retardation
effect [7]. The electric field is distorted by spherical colloids
and the distortion suppresses the electrophoretic mobility.
O’Brien and White found nonlinear dependencies of the
electrophoretic mobilities on ζ for thin double layers in
contrast to the Smoluchowski equation [8]. They considered a
sufficiently weak electric field and linearized kinetic equations
for the field (weak-field linearization). This nonlinear behavior
is due to the polarization of the electric double layer and surface
conduction. On the other hand, in the case of polyelectrolytes,
Hermans and Fujita proposed a new equation for mobility
[see Eq. (83)] [9,10]. This equation ignores the double-
layer polarization and surface conduction and is derived
by using the Debye–Hückel approximation and weak-field
linearization. These nonlinear effects on the electrophoresis
of polyelectrolytes have been recently studied [11–13].

Classical studies on electrophoresis consider the immobile
electric charges fixed by chemical bonds to surfaces or
polymer backbones. Recently, a new type of electrophoresis
that is attributed to other charges, such as induced charges
on conductive particles, was reported [14–17]. In this type
of electrophoresis, an external electric field leads to nonuni-
form ζ potentials and induces electro-osmotic flow. When a
particle possesses asymmetries, such as a partially insulator
coating and nonspherical shape, the resulting asymmetric
flow drags the particle to one direction. Another example
is a cation-selective conductive sphere. Due to concentration
polarization, the particle migrates under a uniform field [18].
Electrophoresis of drops, bubbles, and metal drops has also
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been intensively studied [19–23]. Regardless of the no-fixed
charge on their bodies, they can migrate under an applied field.

In this paper, we examine electrically neutral polymers.
However, mobile ions have selective affinity to the poly-
mers. The selective affinity of ions to polymers originates
from ion-dipole interactions [24,25]. The contributions of
selective affinity to phase separation, precipitation, and phase
transition are quite strong [26–28]. Brooks reported that ion-
polymer interaction affects the electrophoretic mobility [29].
Moreover, selective affinity of ions affects electro-osmosis
in polyethyleneglycol-coated capillaries [30]. Takasu et al.
reported that the electrically neutral polymer polyestersulfon
in butanol and dimethylformamide mixtures accumulate on the
anode when an electric potential difference is applied between
the electrodes [31]. Because butanol is a protonic solvent, a
small amount of ions remains in the dispersions. In addition,
the monomeric unit of polyestersulfon contains dipoles. The
resulting selective affinity of the ions to the neutral polymer
may lead to finite electrophoretic mobility.

In this study, we propose a new mechanism for the elec-
trophoresis of neutral polymers in solutions containing mobile
ions. The proposed model is based on electrohydrodynamics,
and we include the effects of selective affinity by considering
constant interaction energies between ions and spheres. Be-
cause the model for selective affinities is based on assumptions,
analytical expressions would not be able to quantify the
mobilities. However, analytical calculation of the mobility by
using a simple model is very helpful to show the possibility of
migration. We hope the results of this study will inspire others
to look for electrophoresis in other nonionic polymers.

II. THEORETICAL DESCRIPTION

We consider a porous sphere with radius R in electrolyte
solutions [see Fig. 1(a)]. The model describes a single polymer
molecule in dilute polymer solutions or a microgel particle in
its suspension. We ignore the deformation and swelling of the
porous sphere and treat it as a rigid body.

In the solvent, cations and anions are dissolved. The
amount of each ion species is the same because of the
charge neutrality of the system. For simplicity, we neglect
the dissociation equilibrium of salts and assume that all the
ions are monovalent.
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FIG. 1. (a) Illustration of the porous sphere in the electrolyte
solution. The sphere is soaked with solvents and ions. (b) Illustration
of the strong interaction between ions and dipoles on a polymer. The
arrows on the polymer represent the direction of dipole moments.

Polymers have dipoles in their monomeric unit, and the
interactions between the dipoles and ions in solution are strong
[see Fig. 1(b)]. The strength of the interaction depends on the
radii of the ions and the dielectric constant of the solvent;
therefore, the ionic concentration in the porous sphere is
possibly different from the outer concentration. We include
these effects in the model by considering the interaction
energies between the ions and the neutral sphere.

The free energy F of the system consists of ion contribu-
tions and electrostatic interactions

F = Fion + Fel. (1)

The ion free energy with contributions from the translational
entropy of the ions and the ion-dipole interaction is given by

Fion = kBT

∫
d r

∑
i=±

ci
[
ln(civ0) − 1 + μi

0θs

]
, (2)

where kBT is the thermal energy, and c+(r) and c−(r) are
the concentrations of the cations and anions, respectively. v0

is the volume of an ion, and μ+
0 and μ−

0 are the additional
chemical potentials due to the ion-dipole interaction. In Eq. (2),
s = r/R is the dimensionless radial coordinate and θs is a type
of Heaviside function given by

θs =
{

1 (s � 1)
0 (s > 1) ,

(3)

which is not zero only in the porous sphere. The electrostatic
free energy is given by

Fel =
∫

d r
ε

8π
|∇ψ |2, (4)

where ε is the dielectric constant of the solution, which we
assume to be uniform, and ψ(r) is the local electrostatic
potential. The local electrostatic potential is obtained by
solving the Poisson equation

ε∇2ψ = −4πρ. (5)

ρ(r) is the charge density defined as

ρ = e(c+ − c−), (6)

where e is the elementary electric charge.

If an infinitesimal space-dependent deviation δρ is super-
imposed on ρ, the incremental change of Fel is given by

δFel =
∫

d rψδρ. (7)

Thus, the dimensionless chemical potentials of the ions are
given by

μ+ = 1

kBT

δF

δc+ = ln(c+v0) + 
 + μ+
0 θs, (8)

μ− = 1

kBT

δF

δc− = ln(c−v0) − 
 + μ−
0 θs, (9)

where 
 = eψ/(kBT ) is the dimensionless local electrostatic
potential.

A. Equilibrium distributions of ions and electrostatic potential

In the equilibrium state, the chemical potential is homo-
geneous. We solve Eqs. (8) and (9) with constant chemical
potential μ±

b and the Poisson equation (5). Then, the concen-
trations of the ions are obtained as

c+ = cbe
−
−μ+

0 θs , (10)

c− = cbe

−μ−

0 θs , (11)

where cbv0 = eμ+
b = eμ−

b is the concentration of the ion located
far from the porous sphere (s → ∞). In the absence of an
external field, the system is radially symmetric. With the
equilibrium distributions of c±, the Poisson equation with
respect to s is given by

1

s2

d

ds

(
s2 d


ds

)
= κ2e�0θs sinh(
 − 
0θs), (12)

where κ2 = 8πe2cbR
2/(εkBT ) is the square inverse of the

dimensionless Debye length. We define two new affinity
parameters as

�0 = −μ+
0 + μ−

0

2
, (13)


0 = −μ+
0 − μ−

0

2
. (14)

�0 is the average affinity to the porous sphere, and 
0 is the
affinity difference between the cations and anions.

The boundary conditions for the equilibrium states are as
follows:

lim
s→∞ 
 (s) = 0, (15)

d


ds

∣∣∣∣
s=0

= 0, (16)

and 
 and d
/ds are continuous at s = 1. We note that,
under these conditions, c+, c−, and ρ show discontinuous
changes at s = 1. These discontinuities are attributed to the
sharp interface of the porous sphere.
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B. Electrohydrodynamic equations

When weak external fields are applied, the system relaxes
to a new equilibrium state or a steady dynamical state. The
relaxation process and the steady state are described by the
hydrodynamic equations as

ρm

(
∂u
∂t

+ u · ∇u
)

= ∇ ·↔
σ − f θsu, (17)

where ρm is the mass density, u is the velocity field,
↔
σ is the

stress tensor, and η is the viscosity of the solution. According to
the Debye–Bueche–Brinkman theory [32,33], a porous sphere
shows a frictional force that is linearly related to u when it
moves in the solvent. The last term in the right-hand side
of Eq. (17) represents the frictional force with f being the
constant.

In addition, the velocity field satisfies the incompressible
condition given by

∇ · u = 0. (18)

The concentration dynamics are given by

∂c+

∂t
+ u · ∇c+ = ∇ · [D+c+∇μ+], (19)

∂c−

∂t
+ u · ∇c− = ∇ · [D−c−∇μ−], (20)

where D+ and D− are the diffusion coefficients of the cations
and anions, respectively. The local electric potential satisfies
the Poisson equation (5).

The stress tensor has contributions from

↔
σ = ↔

σ
U +↔

σ
E

, (21)

where
↔
σ

U

is the mechanical part of the stress tensor, and
↔
σ

E

is the Maxwell stress tensor. They are given by

↔U
σ = −p

↔
I + η[∇ ⊗ u + (∇ ⊗ u)t ], (22)

↔
σ

E = ε

4π
∇ψ ⊗ ∇ψ − ε

8π
|∇ψ |2↔

I , (23)

where p is the pressure,
↔
I is the unit tensor, and ⊗ is the tensor

product operator. The pressure is given by

p = p0 + kBT (c+ + c−) + kBT (μ+
0 c+ + μ−

0 c−)θs, (24)

where the first term is the mechanical pressure, the second
is the osmotic pressure, and the third is the pressure due to
selective affinity. In dynamical situations, u, ψ , and p are
continuous at r = R.

C. Steady states in weak-field linearization

We consider the steady states when we apply a weak electric
field E to the solution at rest, where E is parallel to the unit
vector in the z direction ẑ. In the weak-field linearization,
the porous sphere is dragged with velocity μE, where μ is
the mobility. This steady state is equivalent to the porous
sphere being fixed under the applied electric field E and the
corresponding external velocity field U = −μE.

We assume a weak external electric field with small
increments of physical quantities from the equilibrium state.
Thus, we obtain

∇ · δ
↔
σ − f θsu = 0, (25)

ε∇2δψ = −4πδρ, (26)

∇ · (c+equ − D+c+eq∇δμ+) = 0, (27)

∇ · (c−equ − D−c−eq∇δμ−) = 0, (28)

where Xeq represents the equilibrium value of the physical
quantity X, and δX represents the increment from Xeq. For
example, δρ is the increment of the charge density given by

δρ = e(δc+ − δc−), (29)

where δc+ and δc− are the increments of the concentration of
the cations and anions, respectively.

In addition to these equations, the force Fp exerted on the
sphere should be zero because the sphere is at rest. Because
the equilibrium stress tensor does not contribute to the exerted
force, this condition is given by

Fp =
∫

s=1−0
δ
↔
σ · r̂dS = 0, (30)

where dS is the infinitesimal surface element on the sphere.
On the basis of the divergence theorem and Eq. (25), the force
is rewritten as

Fp =
∫

s<1−0
f ud r. (31)

From the homogeneity of the chemical potentials of the
cations and anions in the equilibrium state e∇ψeq/(kBT ) =
−∇c+eq/c+eq = ∇c−eq/c−eq,

∇ · δ
↔
σ

E = −δρ∇ψeq − ρeq∇δψ

= kBT
∑
i=±

(∇δci − cieq∇δμi). (32)

Equation (25) is rewritten in dimensionless form as

(∇̃2 − λ2θs)ũ − ∇̃δp̃ + κ2

2

∑
i=±

(∇̃δc̃i − c̃ieq∇̃δμi) = 0, (33)

where ∇̃ = R∇ is the dimensionless nabla operator, λ =
R

√
f/η is the reciprocal of the dimensionless hydrodynamic

screening length,

ũ (r) = 4πηe2R

ε (kBT )2 u (r) (34)

is the dimensionless velocity field,

δp̃ = 4πe2R2

ε (kBT )2 δp (35)

is the dimensionless pressure, c̃±eq = c±eq/cb is the dimen-
sionless equilibrium concentration of the ions, and δc̃± =
δc±/cb is its increment. We take the rotation of Eq. (33) to
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remove the isotropic stress and obtain

∇̃ × ∇̃2ũ − λ2θs∇̃ × ũ − κ2

2

∑
i=±

∇̃c̃ieq × ∇̃δμi = 0. (36)

From the symmetry under consideration, we introduce the
dimensionless functions φ+(s), φ−(s), Y (s), and h(s) as

δμ+ (r) = −φ+ (s) cos θ, (37)

δμ− (r) = φ− (s) cos θ, (38)

δ
 (r) = −Y (s) cos θ, (39)

ũ (r) = − r̂
s

2h cos θ + θ̂

s

d (sh)

ds
sin θ, (40)

where θ is the polar angle, and r̂ and θ̂ are the unit vectors in
the spherical polar coordinate system. Using the dimensionless
function, Eqs. (26)–(28) and (36) are written as[

L − d
eq

ds

d

ds

]
φ+ + 2ε (kBT )2

4πηe2D+
d
eq

ds

h

s
= 0, (41)

[
L + d
eq

ds

d

ds

]
φ− + 2ε (kBT )2

4πηe2D−
d
eq

ds

h

s
= 0, (42)

LY + κ2

2
[c̃+eq(φ+ − Y ) + c̃−eq(φ− − Y )] = 0, (43)

L(L − λ2θs)h + κ2

2

d
eq

ds

1

s
(c̃+eqφ+ + c̃−eqφ−) = 0, (44)

where L is a differential operator defined as

L = d

ds

1

s2

d

ds
s2. (45)

The increments of pressure can be represented by

δp̃ = − cos θ

{
d

ds
[s(L − λ2θs)h] − κ2

2
(c̃+eq − c̃−eq)Y

}
.

(46)

The derivation of Eq. (46) is presented in Appendix A.
The increments of the cations and anions concentrations are
given by

δc+ = c+eq(Y − φ+) cos θ, (47)

δc− = −c−eq(Y − φ−) cos θ. (48)

1. Boundary conditions for h(s), φ±(s), and Y (s)

At s = 1, h(s), dh(s)/ds, d2h(s)/ds2, φ+(s), φ−(s), and
Y (s) are continuous. Furthermore, the condition

Fp =
∫

s=1−0
δ
↔
σ · r̂dS =

∫
s→∞

δ
↔
σ · r̂dS (49)

is required instead of the continuity of δp at s = 1. At s = 0,
h(s), φ+(s), φ−(s), and Y (s) should be analytic. Thus, the
following conditions are obtained:

lim
s→0

d2h

ds2
= lim

s→0

d2φ+

ds2
= lim

s→0

d2φ−

ds2
= lim

s→0

d2Y

ds2
= 0. (50)

At s → ∞, other conditions need to be considered. We
set −∇̃
 → ẑ and ũ → −μ̃ ẑ for s → ∞, where μ̃ =
μ/[εkBT/(4πηe)] is the dimensionless mobility. Then, we
obtain

lim
s→∞

dh

ds
= μ̃

2
, (51)

lim
s→∞

dφ+

ds
= lim

s→∞
dφ−

ds
= lim

s→∞
dY

ds
= 1. (52)

III. RESULTS AND DISCUSSION

A. Small limit of selectivity difference

When the selectivity difference is small, |
0| � 1, the
following two approximations can be assumed: One is the
Debye–Hückel approximation for the Poisson–Boltzmann
equation (12). The other is to neglect the double-layer
polarization effects. This implies that the increments of the
ion concentrations δc+ and δc− are infinitesimally small.

1. Debye–Hückel approximation for Poisson–Boltzmann equation

We linearize the Poisson–Boltzmann equation (12) around
the electrostatic potential at the equilibrium state, 
eq,

1

s2

d

ds

(
s2 d
eq

ds

)
= κ2e�0θs (
eq − 
0θs). (53)

We can easily write the solution as


eq =
{

(B1/κs) sinh κ ′s + 
0 (s � 1)
(B2/κs) e−κ(s−1) (s > 1) ,

(54)

where

B1 = − κ (1 + κ)

κ ′ cosh κ ′ (1 + κ − κGκ ′)

0, (55)

B2 = κGκ ′

1 + κ − κGκ ′

0, (56)

and κ ′ = κe�0/2 is the effective dimensionless Debye wave
number inside the porous sphere. In addition, we introduce the
function

Gx = 1 − tanh x

x
. (57)

The Taylor expansion of Gx around x = 0 is given by

Gx = 1
3x2 − 2

15x4 + 17
315x6 − 62

2835x8 + · · · , (58)

and the asymptotic expansion for |x| 
 1 is given by

Gx = 1 − x−1. (59)

In Fig. 2(a), we plot Gx as a function of x. Gx is a
monotonically increasing function for x > 0.

The potential at the interface 
R is given by


R = Gκ ′

1 + κ − κGκ ′

0. (60)

In Fig. 2(b), we plot 
R/
0 as a function of κ . For all �0,

R/
0 is a monotonically increasing function. When the
Debye length is larger than the sphere radius, the potential
at the surface is suppressed. When the average affinity �0 is
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FIG. 2. (Color online) (a) Gx is shown as a function of x (solid
red line), 1 − x−1 is the asymptotic expansion (green dashed line),
and x2/3 is the first term of the Taylor expansion (blue dotted line).
(b) 
R/
0 is plotted as a function of κ with �0 = 2 (green dashed
line), 0 (solid red line), and −2 (blue dotted line).

positive, the surface potential increases. Taking the limit of
κ → ∞, we obtain


R → e�0/2

1 + e�0/2

0. (61)

This result implies that when the average affinity �0 is
negative, the potential at the interface decreases exponentially
with �0, even if the affinity difference 
0 is finite.

The total charge inside the sphere is given by

Q =
∫

r<R

ρd r = e
1 + κ

�B/R

R, (62)

which is proportional to the potential at the interface. The
charge density at the interface in the large limit of R is given
by

q = Q

4πR2
→ e

κ

4π�BR

R. (63)

We plot the profiles of electrostatic potentials and charge
densities in the Debye–Hückel approximation. First, we
consider the case in which the average affinity is zero, i.e.,
�0 = 0. As shown in Fig. 3(a), a positive potential difference
is formed between the porous sphere and an infinite distance
from the sphere. In electrochemistry, this potential difference
is called the Galvani potential. The sharpness of the differences
is characterized by the length scale κ−1 in and out of the sphere.
The profiles of charge densities are shown in Fig. 3(b). The
charge density is positive inside the sphere and negative outside
the sphere. The structure forms an electric double layer.

In the case of zero average affinity, the electrostatic potential
inside the porous sphere decays with κ ′, which is different from
that outside the sphere. We plot the profiles of 
 and ρ for (3)

0 = 5 and (4) 
0 = −5 in Figs. 3(c) and 3(d), respectively.
When the average affinity is negative, the potential at the
interface is nearly zero, as shown in Fig. 3(c). This is consistent
with Eq. (61).

2. Neglecting double-layer polarization

We consider the limit of the small selectivity difference
(|
| � 1). In this limit, Eqs. (41) and (42) are approximated
by Lφ+ = 0 and Lφ− = 0, respectively. At the boundary
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FIG. 3. (Color online) Profiles of the dimensionless electro-
static potential 
/
0 and the dimensionless charge density ρ̃ =
−κ2e�0θs (
eq − 
0θs). We set λ = 5 for all conditions. (1) κ = 10/3
and �0 = 0 (solid red line). (2) κ = 10 and �0 = 0 (green dotted
line). (3) κ = 10/3 and �0 = 5 (solid blue line). (4) κ = 100/3 and
�0 = −5 (orange dotted line).

condition, their solutions are given by

φ+(s) ≈ s, (64)

φ−(s) ≈ s. (65)

Thus, Eq. (43) is solved approximately as

Y (s) ≈ s. (66)

This approximation is valid if the increments of ion concen-
trations are assumed to be zero. Thus, we solve only Eq. (44)
in this limit.

B. Calculation of mobility

We use the Ohshima model [3,4] to calculate the mobility of
a porous sphere. First, we define the function G(s) as follows:

G(s) = −κ2

2

1

s

d
eq

ds
(c̃+eqφ+ + c̃−eqφ−), (67)

therefore, Eq. (44) is rewritten as L(L − λ2θs)h = G(s).
At the limit of small selectivity difference, we obtain an

expression for G(s), which is given by

G (s) = −κ2e�0θs
d
eq

ds
. (68)

If the function G(s) is known, Eq. (44) can be solved
analytically using the boundary conditions and the force
balance condition Eq. (30). The derivation of function h(s)
is discussed in Appendix B. The mobility is simply given by

μ̃ = 2
0

3

1 − Hκ (κ ′)/Hκ (λ)

1 − λ2/κ ′2 , (69)
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where

Hκ (x) = Gx

x2(1 + κ − κGx)
. (70)

Next, we discuss the sign of the mobility. We calculate the
differentiation of Hκ as

dHκ

dx
= −x2 cosh−2 x + x tanh x − 2 tanh2 x

x3 (x + κ tanh x)2 (κ − κc) , (71)

where

κc = − x2 cosh−2 x − 3x tanh x + 2x2

x2 cosh−2 x + x tanh x − 2 tanh2 x
. (72)

For x > 0, we numerically assure that the numerator and
denominator of κc are positive

x2 cosh−2 x − 3x tanh x + 2x2 > 0, (73)

x2 cosh−2 x + x tanh x − 2 tanh2 x > 0. (74)

Thus, we obtain κc < 0 and

dHκ

dx
< 0 for κ > 0 and x > 0. (75)

Therefore, Hκ (x) is a monotonically decreasing function
with x > 0 for the fixed parameter κ > 0. We rewrite the
electrophoretic mobility Eq. (69) as

μ̃ = 2
0

3

κ ′2

κ ′2 − λ2

Hκ (λ) − Hκ (κ ′)
Hκ (λ)

, (76)

and we obtain

μ̃ > 0 for κ, κ ′, and λ > 0. (77)

This implies that the porous sphere electrophoreses as if its
surface is charged with the same sign as the Galvani potential
across the interface. The direction of electrophoresis is not
reversed under the same sign of the affinity difference 
0.

C. Mobility and velocity field

Because the mobility formula (69) is complex, we consider
several limits of large and small κ and λ [9,10].

(a) We consider the limit of λ → ∞ with κ to be fixed. At
this limit, the mobility approaches the value given by

μ̃ → 2
R

3
. (78)

This is the same as the Hückel formula for a charged spherical
colloid at the limit of κ → 0. In the proposed model, the
dielectric constant of the sphere is the same as that of the
solvent; thus, the electric field is not distorted, which is in
contrast to Henry’s equation [7].

(b) In the limit of λ → 0 with κ fixed, the mobility is given
by

μ̃ → 2
0

3

[
1 − 3 (1 + κ) Gκ ′

κ ′2 (1 + κ − κGκ ′)

]
. (79)

In this condition, the sphere is freely dragged. When the
polymer concentration approaches zero, the sphere achieves
free draining. However, the affinity difference also approaches
zero. Therefore, the finite mobility Eq. (79) is unnatural.

(c) At the limit of κ → ∞, with fixed λ, the mobility
approaches the value given by

μ̃ → 2
0

3
. (80)

This value does not depend on the average affinity �0 and
radius R.

(d) At the limit of κ → 0, with fixed λ.

μ̃ → 0. (81)

This is the limit for the salt-free condition. Electrophoresis
entirely originates from dissolved ions. Therefore, this result
is reasonable.

(e) We take the limit κ and λ to infinity with fixed κ/λ. This
corresponds to the limit of an infinite radius. We obtain the
mobility formula given by

μ̃ = 2
0

3

[
κ ′(κ + κ ′ + λ)

(κ + κ ′)(κ ′ + λ)

]
. (82)

Note that Eq. (82) is similar to the Hermans–Fujita equation,
which is given by

μHF = ecf

f

[
1 + 2

3

(
λ

κ

)2 1 + λ/2κ

1 + λ/κ

]
, (83)

where cf is the concentration of fixed charges on the poly-
electrolytes [9]. These authors also considered the small limit
of the fixed charge density of the polyelectrolytes. From the
charge neutrality condition in the bulk polyelectrolytes, one
obtains

ecf = ec
eψHF/kBT

b − ec
−eψHF/kBT

b ≈ 2e2cbψHF/(kBT ), (84)

where ψHF is the potential difference between the bulk
polyelectrolytes and the infinite distance. Using this relation,
the mobility is rewritten as

μHF = ecf

f
+ εψHF/2

6πη

(
1 + κ/λ

1 + κ/λ

)
. (85)

In the case of �0 = 0, the proposed mobility formula is
rewritten in dimensional form as

μ = εψ0/2

6πη

(
1 + κ/λ

1 + κ/λ

)
, (86)

where ψ0 = kBT 
0/e. It is the same as the second term on
the right-hand side of Eq. (85). Thus, we interpret the first and
second terms on the right-hand side of Eq. (85) to represent the
contributions of the fixed bulk charge inside the polyelectrolyte
and the surface charge, respectively.

We discuss the meanings of Eq. (82). According to Eq. (61),
we rewrite the mobility equation as

μ̃ = 2
R

3

(
1 + κ/λ

1 + (κ/λ) e�0/2

)
. (87)

When we fix the average affinity, the mobility is an increasing
function of κ/λ. In Fig. 4, we show the dimensionless mobility
with respect to κ/λ for different radii R. First, we consider the
average affinity to be zero. As shown in Fig. 4(a), when salts are
added, mobility increases because the amount of charge near
the interface increases. When κ/λ approaches 10, the reduced
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FIG. 4. (Color online) Dimensionless mobility μ̃ plotted as a
function of κ/λ. We set 
0 = 0.1 and λ/R = 1/200 nm−1 for all
cases. (a) �0 = 0, R = 1 μm (double purple line), 3 μm (blue dotted
line), 10 μm (green dashed line), and infinite [Eq. (82)] (solid red
line). (b) �0 = 5. (c) �0 = −5. (d) Two-dimensional plot of the
magnitude of the dimensionless mobility in κ/λ − �0 plane with
infinite radius.

mobility approaches μ̃ = 2
0/3 = 0.0667, [μ = εψ0/(6πη)]
for all radii, as discussed in Eq. (80).

When the average affinity is �0 = 5, as shown in Fig. 4(b),
their behavior is the same as those for �0 = 0. In the case of
�0 = −5 [Fig. 4(c)], the mobility also increases with κ/λ. Low
salinity and small radius suppress the mobility. Even at κ/λ =
10, the mobilities are not saturated at the upper bound [see
Eq. (80)]. Figure 4(d) is a contour map of the dimensionless
mobility for infinite radius [see Eq. (82)]. We infer that the
reduced mobility strongly depends not only on κ/λ but also
on average affinity.

Next, we consider the velocity profile. Figure 5 shows
the velocity profile ũz on the x axis. The flow profile is

 0

 1

 2

 3

 4

 5

-0.08 -0.06 -0.04 -0.02  0  0.02

FIG. 5. The dimensionless velocity profile of ũz on the x axis.
(a) κ = 10/3, λ = 5, �0 = 0 (solid black line). (b) κ = 100/3, λ = 5,
�0 = 5 (solid gray line).

FIG. 6. Schematic illustration of the streamlines in xz plane.
Dashed black line denotes the surface of the sphere. Curved gray
arrows are the streamlines. (a) κ = 10/3, λ = 5, �0 = 0. (b) κ =
100/3, λ = 5, �0 = 5.

uniform near the center of the sphere, which is purely due
to the pressure gradient. Because of the charge distribution, on
which the electrostatic force acts, the shear gradient is localized
close to the interface of the sphere. Far away from the surface,
the velocity is nearly constant and directly provides the mobil-
ity. In the case of �0 = 0 [Fig. 5(a)], the velocity at the center
is positive, whereas near the surface it is negative. Therefore,
the circulation inside the sphere is counterclockwise. On the
other hand, �0 = 5 [Fig. 5(b)] shows that the circulation
is clockwise. Figures 6(a) and 6(b) schematically show the
streamlines corresponding to the flow profiles in Figs. 5(a)
and 5(b), respectively.

IV. SUMMARY AND REMARKS

On the basis of the electrohydrodynamics and Poisson–
Boltzmann theory, we studied the electrophoresis of a nonionic
polymer induced by dissolved ions.

Mainly, from analytical calculations, we pointed out that
a nonionic polymer may swim under an applied electric field
because of the selective affinity of ions. The main results are
summarized below.

(i) When the affinity difference of the cations and anions is
nonzero, the mobility is finite and proportional to the affinity
difference. When the radius of the sphere is sufficiently large,
the mobility can be expressed as

μ = εψ0

6πη

[
κ ′(κ + κ ′ + λ)

(κ + κ ′)(κ ′ + λ)

]
, (88)

and it increases with respect to the concentration of ions.
(ii) The direction of electrophoresis depends on the sign of

the Galvani potential induced by the affinity difference. When
it is positive, the sphere electrophoreses as if it is a positively
charged colloid.

Finally, the following remarks are added:
(1) In this study, we did not specify the microscopic

origin of the average affinity and affinity difference. In several
polymers, the molecules have electric and magnetic dipoles,
and they are typically fixed inward or outward on the polymer
backbone. The asymmetry of the dipole direction would lead
to the affinity difference. When organic salts are dissolved,
the difference in the hydrophobicity between the cations and
anions also contributes to the average affinity. In particular,
antagonistic salts would lead to large affinity differences.
When the ions are multivalent, the situation is more complex.
The microscopic theory, which can explain their origin, is also
an important problem to handle.
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(2) We only analyzed the limit of the small affinity
difference because of the ease of analytical treatment. In the
case of large affinity difference, the double-layer polarization
is not negligible and results in nonlinear behavior of the affinity
difference. This is a problem for future research.

(3) Similar to cation-selective conductive particles [18],
the asymmetry of ions causes particle migration under
a uniform electric field. However, the selective affin-
ity is static asymmetry, inducing the spherically uniform
Galvani potential in the equilibrium state, whereas the
selective conductivity is a dynamical asymmetry, which
forms nonuniform ζ potential across the thin double layer.
Therefore, the proposed model is simpler because the

migration can be obtained without analyzing the concentration
polarization.
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APPENDIX A: CALCULATION OF PRESSURE INCREMENT

We define l(s) as an antiderivative of h(s); therefore, dl/ds = h. Then, the velocity field can be represented by ũ = ∇̃ × ∇̃ ×
(l ẑ) [34]. We calculate ∇δp. By using Eq. (33), the gradient of the pressure increment is given by

∇̃δp̃ = (∇̃2 − λ2θs)ũ + κ2

2

∑
i=±

(∇̃δc̃i − c̃ieq∇̃δμi). (A1)

The first term is calculated by

(∇̃2 − λ2θs)ũ = (∇̃2 − λ2θs)[∇̃∇̃ · (l ẑ) − ẑ∇̃2l]

= ∇̃[cos θ (L − λ2θs)h] − ẑ∇̃ · [r̂(L − λ2θs)h]

= ∇̃[cos θ (L − λ2θs)h] − ẑ
1

s2

d

ds
[s2(L − λ2θs)h]

= ∇̃
{

cos θ (L − λ2θs)h − cos θ
1

s

d

ds
[s2(L − λ2θs)h]

}
+ s cos θ∇̃

{
1

s2

d

ds
[s2(L − λ2θs)h]

}

= −∇̃
{

cos θ
d

ds
[s(L − λ2θs)h]

}
+ s cos θ r̂L(L − λ2θs)h

= −∇̃
{

cos θ
d

ds
[s(L − λ2θs)h]

}
− s cos θ r̂

κ2

2

1

s

d
eq

ds
(c̃+eqφ+ + c̃−eqφ−)

= −∇̃
{

cos θ
d

ds
[s(L − λ2θs)h]

}
+ κ2 cos θ

2
(φ+∇̃c̃+eq − φ−∇̃c̃−eq). (A2)

In addition, the second term of the right-hand side of Eq. (A1) is calculated as

−
∑
i=±

c̃ieq∇̃δμi = c̃+eq∇̃(φ+ cos θ ) − c̃−eq∇̃(φ− cos θ ). (A3)

Thus, we obtain

∇̃δp̃ = ∇̃
(

cos θ

{
κ2

2
(c̃+eq − c̃−eq)Y − d

ds
[s(L − λ2θs)h]

})
. (A4)

We solve Eq. (A4) and obtain the explicit expression of the pressure increment as

δp̃ = cos θ

{
κ2

2
(c̃+eq − c̃−eq)Y − d

ds
[s(L − λ2θs)h]

}
. (A5)

APPENDIX B: CALCULATION OF THE FUNCTION h(s)

The function h(s) is given by

h (s) =
{∑4

j=1 Cjfj (s) + ∫ s

1 f9(s,s ′)G(s ′)ds ′ (s � 1)∑8
j=5 Cjfj (s) + ∫ s

∞ f10(s,s ′)G
(
s ′) ds ′ (s > 1) ,

(B1)
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where f1(s) = λs, f2(s) = (λs)−2,

f3 (s) = cosh λ (s − 1)

λs
− sinh λ (s − 1)

λ2s2
, (B2)

f4 (s) = sinh λ (s − 1)

λs
− cosh λ (s − 1)

λ2s2
, (B3)

f5(s) = s, f6(s) = s−2, f7(s) = 1, and f8(s) = s3. The functions {fj }4
j=1 are the eigenfunctions of the differential equation

L(L − λ2)f = 0, while {fj }8
j=5 are the eigenfunctions of L2f = 0. Moreover, f9(s,s ′) and f10(s,s ′) are given by

f9
(
s,s ′) = 1

λ3

(
s ′

s
− 1

λ2s2

)
sinh λ(s − s ′) − 1

λ3

(
s ′

λs2
− 1

λs

)
cosh λ(s − s ′) − 1

3λ2

(
s − s ′ 3

s2

)
, (B4)

f10(s,s ′) = − s ′5

30s2
+ s ′ 3

6
− ss ′ 2

6
+ s3

30
, (B5)

using the variation-of-constants method.
The boundary conditions are as follows: The analyticity of h(s) gives

C2 = A1, (B6)

and

C3 tanh λ − C4 = A2, (B7)

The continuities of h, dh/ds, and d2h/ds2 at s = 1 give

λC1 + C2/λ
2 + C3/λ − C4/λ

2 − C5 − C6 − C7 − C8 = A3, (B8)

λC1 − 2C2/λ
2 − 2C3/λ + (1 + 2/λ2)C4 − C5 + 2C6 − 3C8 = A4, (B9)

6C2/λ
2 + (λ + 6/λ2)C3 − 3(1 + 2/λ2)C4 − 6C6 − 6C8 = A5. (B10)

Moreover, the boundary conditions at s → ∞ give

C5 = μ̃/2 (B11)

and

C8 = 0. (B12)

The condition Eq. (49) is given by

λC1 + C2/λ
2 + C3/λ − C4/λ

2 = −3C7/λ
2. (B13)

Because the sphere position is fixed in the steady state, this force should vanish; therefore,

C7 = 0, (B14)

The integrals Aj are calculated with G(s) as

A1 = 1

3

∫ 1

0
s3G (s) ds, (B15)

A2 = 1/λ3

cosh λ

∫ 1

0
(sinh λs − λs cosh λs)G (s) ds, (B16)

A3 =
∫ 1

∞

(
− s5

30
+ s3

6
− s2

6
+ 1

30

)
G (s) ds, (B17)

A4 =
∫ 1

∞

(
s5

15
− s2

6
+ 1

10

)
G (s) ds, (B18)

A5 =
∫ 1

∞

(
− s5

5
+ 1

5

)
G (s) ds. (B19)

At the limit of the small selectivity difference, we obtain analytical expressions of the integrals Aj , which are given by

A1 = B1κ
′ cosh κ ′

κ

[
Gκ ′ − κ ′2 (1 − Gκ ′ )

3

]
, (B20)
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A2 = B1κ
′ cosh κ ′

κ

[
κ ′2Gλ (1 − Gκ ′ )

λ2
− Gκ ′ − Gλ

1 − λ2/κ ′2

]
, (B21)

A3 = B2κ
−3(κ + 1), (B22)

A4 = −B2κ
−3(κ2 + 2κ + 2), (B23)

A5 = B2κ
−3(κ3 + 3κ2 + 6κ + 6). (B24)

Therefore, we obtain approximated expressions of the coefficients Cj using Aj ,

C1 = 1/λ3

1 + 3Gλ/2λ2

[
−A1 + A2

2
+ 3A3 − 3

(
1 − Gλ

2

)
A4 −

(
3

2
− Gλ

2

)
A5

]
, (B25)

C2 = A1, (B26)

C3 = 1/λ3

1 + 3Gλ/2λ2

[
3A1 − 3A2

2
− 9A3 + 3(3 + λ2)A4 +

(
9

2
+ λ2

)
A5

]
, (B27)

C4 = 1/λ3

1 + 3Gλ/2λ2

[
3λ(1 − Gλ)A1 − λ

2
(2λ2 + 3)A2 − 9λ (1 − Gλ) A3

+ 3λ(1 − Gλ)(3 + λ2)A4 + λ (1 − Gλ)

(
9

2
+ λ2

)
A5

]
, (B28)

C5 = 2

3Gλ

[
−3Gλ

2λ2
A1 − A2

2
−

(
1 − 3Gλ

λ2

)
A3 +

(
1 − 3Gλ

2
− 3Gλ

λ2

)
A4 +

(
1

2
− Gλ

2
− 3Gλ

2λ2

)
A5

]
, (B29)

C6 = 1

1 + 3Gλ/2λ2

[
3Gλ

2λ2

(
1 + 3

λ2

)
A1 + 1

2

(
1 + 3

λ2

)
A2 +

(
3

λ2
− 9Gλ

2λ2
− 9Gλ

λ4

)
A3

−
(

1 + 3

λ2

)(
1 − 3Gλ

2
− 3Gλ

λ2

)
A4 −

(
1 + 3

λ2

) (
1

2
− Gλ

2
− 3Gλ

2λ2

)
A5

]
, (B30)

C7 = 0, (B31)

C8 = 0. (B32)
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