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We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations.
A solution of positively charged polyelectrolytes is confined between two negatively charged planar
surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction be-
tween the polymer and the surface is strong, the polymers adhere to the surface, forming a highly
viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis
is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic
flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign.
These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820236]

I. INTRODUCTION

Aqueous solutions of polyelectrolytes are widely seen in
many systems,1 and are used in a variety of industrial ap-
plications. Some bio-macromolecules, such as proteins and
DNA, also exist in the charged state. The chemical and phys-
ical properties of polyelectrolyte solutions have been exten-
sively studied.2–6 When a polyelectrolyte solution flows near a
charged interface, electrokinetic phenomena occur. The elec-
trokinetics of polyelectrolyte solutions are important for un-
derstanding some physiological situations such as strain and
restoration of bone7 and blood flows in capillary vessels.8

However, although electro-osmosis and electrophoresis have
been well investigated in simple electrolyte solutions,9 the
electrokinetics in polyelectrolyte solutions are not entirely
understood.10–12

The static properties of electrically neutral polymers near
solid walls have been described by mean-field and scaling
theories.13–15 According to prediction, the spatial decay of the
concentration profile from the surface to the bulk follows an
exponential or power law. If the chemical intermolecular in-
teractions between the polymer and the wall surface are suf-
ficiently strong, adsorption or depletion layers form on the
wall. By contrast, in polyelectrolyte solutions, the concen-
tration profile and conformations of the polymer chains de-
pend on the interplay between the electrostatic and chemical
interactions.16–21 Electrostatic interactions attract the poly-
electrolytes to the oppositely charged wall, and vice versa
thereby, lead to formation of the adsorption layer. If the poly-
electrolyte adsorption is strong, the electrostatic potential is
highly modified and the concentration profile becomes non-
monotonic. In the phenomenon known as charge inversion
or overcharging, the electrostatic potential decays to its bulk
value with reversed sign.

A few experimental and theoretical studies on the elec-
trokinetics in polyelectrolyte solutions have been reported.
The first measurements of electro-osmosis in a polyelectrolyte
solution did not account for the near-surface structures.22
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Later researchers noted the importance of fluid viscosity in
the electric double layer.23, 24 Electro-osmosis is also thought
to be influenced by the non-Newtonian behavior of poly-
meric liquids.5, 25–27 However, instead of considering elec-
trostatic and chemical interactions, these studies assumed a
given static profile near the surface. This study aims to clar-
ify the electro-osmosis of polyelectrolyte solutions, focusing
on the structure of electric double layers. In determining the
electro-osmotic coefficient, both viscosity near the interface
and the strength of the overcharging are considered.

II. MACROSCOPIC ELECTRO-OSMOSIS

When a charged-surface capillary is filled with an elec-
trolyte solution and subjected to an electric field E and a pres-
sure difference P( = −∇p), a volume flux and electric current
are induced along the external fields. Here, p is the pressure.
When E and P are sufficiently weak, the volume flux and the
electric current are given by

V = L11P + L12E, (1)

J = L21P + L22E. (2)

V and J are the mean volume flux and mean electric cur-
rent, respectively, and Lij’s are the Onsager transport coef-
ficients. This article focuses on L12, known as the electro-
osmotic coefficient. In a solution containing many monovalent
ions, the electro-osmotic flow induced by the electric field is
non-Poiseuille. Instead, it presents as a plug flow that expo-
nentially decays with the Debye screening length. When the
capillary diameter is much larger than the Debye screening
length, the electro-osmotic coefficient is independent of the
salt concentration, and is given by Smoluchowski’s formula,
L12 = −εψS/4πη, in which ε is the dielectric constant of the
solution, ψS is the electrostatic potential at the nonslip sur-
faces, and η is the viscosity of the solution. The near-surface
properties of polyelectrolyte solutions in capillaries greatly
differ from those of small-ion electrolyte solutions. For
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example, as mentioned above, polyelectrolyte solutions form
adsorption or depletion layers near the capillary surface.

Also, electro-osmosis in polymer solutions is likely to be
affected by the rheology of the solutions. In particular, the
viscosity of such solutions is not constant but depends on
the local polymer concentration and the shear rate. Later in
this study, we account for both of these factors in determining
the electro-osmotic coefficient using mean-field equations.

III. MEAN-FIELD EQUATIONS FOR
CONCENTRATIONS, ELECTROSTATIC POTENTIAL,
AND FLOW

We consider an aqueous solution of sufficiently long
polyelectrolyte chains in a slit (see Fig. 1). A fraction f of the
polyelectrolytes is positively charged, whereas the slit wall
is negatively charged. Counterions from the polyelectrolytes
and salts are also dissolved in the solution. For simplicity, we
assume that the anions from the salt and the counterions from
the polymers are the same species and all the small ions are
monovalent. The free energy of the system is contributed by
polymer conformations, ion distributions, and electrostatic in-
teractions as follows:

F = Fpoly + Fions + Fele. (3)

The polymer free energy is given by3

Fpoly = kBT

∫
d r

[
a2

6
|∇φ|2 + v

2
φ4

]
, (4)

where φ is an order parameter related to the local polymer
concentration c(r), given by φ(r) = √

c(r). kBT is the ther-
mal energy, a is the monomer size, and v is the second virial
(excluded volume) coefficient of the monomers.

The ion free energy, contributed by the translational en-
tropy of the ions, is given by

Fion = kBT

∫
d r

∑
i=±

[ci ln(cia3) − ci], (5)

where c+(r) and c−(r) are the concentrations of the cations
and anions, respectively. The electrostatic free energy is given

FIG. 1. Schematic of the investigated system. A positively charged polyelec-
trolyte solution is confined within a negatively charged slit and an external
electric field is applied along the slit walls. The long-chain polymers are in-
terspersed with polymer counterions and anions derived from salt.

by

Fele =
∫

d r
[
ρψ − ε

8π
|∇ψ |2

]
, (6)

where ψ(r) is the local electrostatic potential, ε is the dielec-
tric constant of the aqueous solution, and ρ(r) is the electric
charge density defined as

ρ = e(f c + c+ − c−), (7)

where e is the elementary electric charge.
The control parameters in this study are the bulk concen-

trations of the cation c+
b and the charged monomer fraction

f. These parameters should satisfy the neutral charge condi-
tion, f cb + c+

b − c−
b = 0, in the bulk. Here, cb and c−

b are the
bulk concentrations of the monomers and anions, respectively,
whose steady profiles are obtained by minimizing the follow-
ing grand potential:

� = F − μ

∫
φ2d r −

∑
i=±

μi

∫
cid r, (8)

where μ and μi (i = ±) denote the chemical potential of each
component.

The solution is confined within a slit bounded by two par-
allel walls. We assume that the above variables change only
along the y axis, and are homogeneous along the x and z axes.
In this scenario, the mean-field equations are

a2

6

∂2φ

∂y2
= v(φ3 − cbφ) + f φβeψ, (9)

∂2ψ

∂y2
= −4πe

ε
f (φ2 − cb exp[βeψ]) + 8πe

ε
c+

b sinh(βeψ),

(10)

where β = 1/kBT. Equation (9) is the Edwards equation that
accounts for the charge effect, while Eq. (10) is the Poisson-
Boltzmann equation for the system containing the salts and
polyelectrolytes.

Applying a sufficiently weak electric field E in the x di-
rection, the system evolves to steady state in which ion fluxes
are induced along E. Because E is weak and orthogonal to
−∇ψ(y), we assume that it influences neither the concentra-
tion fields nor the polymer conformations (see Appendix A).
In steady state, the mechanical forces are balanced. This force
balance is expressed by the Navier-Stokes equation, whose
simplified form is

∂

∂y

[
η(φ)

∂vx

∂y

]
+ ρE = 0, (11)

where vx(y) is the x component of the velocity field. In this
case, because we impose no pressure difference on the sys-
tem, P = 0 in Eqs. (1) and (2). η(φ) is the viscosity, which
is a function of the concentration order parameter φ. In this
study, we set

η(φ) = η0{1 + h(φ/
√

cb)α}, (12)

where h and α are nondimensional parameters. Here, η0 is
the solvent viscosity and ηb = η0(1 + h) denotes the viscos-
ity in the bulk. Because η(φ) usually increases from η0 as φ
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increases, h and α are assumed positive. As described in Ap-
pendix B, h and α depend on the physical parameters N, f,
and c+

b , in which N is the polymer length. In this study, how-
ever, h is assumed as an independent parameter. According to
Fuoss law,28 we set α = 1. Later, we demonstrate that these
simplifications do not alter the essential results.

As shown in Fig. 1, the surfaces are placed at y = 0 and
2L, where 2L is the slit width and the electrostatic potentials
are the same at both surfaces. Because all profiles are symmet-
ric with respect to y = L, we consider only the range [0, L].
At the bottom surface (y = 0), we assume φ(0) = 0, implying
that the intermolecular interactions between the surfaces and
polymers are strongly repulsive. We also set vx(0) = 0 and
ψ(0) = ψS. The former is the nonslip boundary condition for
the flow. ψS is negative because the surfaces are negatively
charged and the electrostatic interaction between the polymer
and surfaces is attractive. Because the system is symmetric,
all y derivatives vanish at y = L:

∂φ

∂y

∣∣∣∣
y=L

= 0,
∂ψ

∂y

∣∣∣∣
y=L

= 0,
∂vx

∂y

∣∣∣∣
y=L

= 0. (13)

In this study, we assume that the electric field is suffi-
ciently weak so that the flow speed is proportional to the field
strength. Specifying a coefficient λ12(y), the flow profile is
expressed as vx(y) = λ12(y)E. In other words, the solution
is Newtonian and the nonlinear dependence of the flow on E
can be ignored. Having obtained the static profiles (which are
difficult to solve analytically), λ12 is calculated as

λ12(y) = ε

4π

∫ y

0

dy ′

η(φ(y ′))
∂ψ

∂y

∣∣∣∣
y ′

. (14)

This quantity is related to the macroscopic electro-osmotic
coefficient in Eq. (1) by

L12 = 1

L

∫ L

0
λ12(y)dy. (15)

IV. RESULTS AND DISCUSSION

To study the effects of the near-surface polyelectrolyte
structures on electro-osmosis in this system, we numeri-
cally evaluate Eqs. (9)–(11). The parameter settings are cb

= 10−6 Å−3, v = 50 Å3, L = 1024 Å, B = 7 Å, T = 300 K,
ψS = −kBT/e = −25.8 mV, a = 5 Å, and η0 = 0.01 P.
Here, B is the Bjerrum length, given by B = e2/(εkBT).
The polymer chains are assumed so long that cb > c*, where
c* is the overlap concentration of the polymer solution (see
Appendix B).

The electro-osmotic coefficient is evaluated from the
L0

12 of a solution without polyelectrolytes, given by
L0

12 = −εψS/4πη0 = 1.82 × 10−4 cm2/V s. The space dis-
cretization in the numerical calculations is d = 1 Å.

A. Electrically neutral polymer solution
with chemically repulsive surfaces

First, we assume that polymers are electrically neutral,
i.e., f = 0. In this case, the mean-field equations (9) and (10)

are exactly solved as

φ = √
cb tanh

(
y

ξ

)
, (16)

βeψ = 2 ln
1 + e−κy tanh(βeψS/4)

1 − e−κy tanh(βeψS/4)
, (17)

where κ = (8πBc+
b )1/2 is the Debye wave number,

ξ = a/
√

3vcb = 408 Å is the correlation length of the poly-
mer concentration fluctuation, and e is the Napier’s constant.
Note that these analytical solutions are valid only when κ−1

� L and ξ � L because they are solved under the boundary
conditions at y = 0 and L. If |βeψS| � 1, Eq. (17) reduces to

ψ = ψSe−κy, (18)

using the Debye-Hückel approximation.
If the slit width is much larger than all other length scales

in the system, L12 is approximately equal to L12 ≈ λ12(L).
Therefore, we write

L12 ≈ ε

4πη0

∫ L

0

dy

1 + η1φ

∂ψ

∂y
. (19)

Because ψ(y) is a monotonically increasing function of y in
Eqs. (17) and (18), the integral

∫ · · · dy in Eq. (19) can be re-
placed by

∫ · · · dψ , using ey/ξ = ζ−1/κξ . L12 is then calculated
as

L12

L0
12

=
∫ 1

0

(ζ−1/κξ + ζ 1/κξ )dζ

(h + 1)ζ−1/κξ − (h − 1)ζ 1/κξ
, (20)

where ζ = ψ /ψS is a reduced electrostatic potential. After
some calculations, Eq. (20) can be expanded as

L12

L0
12

= 2

h + 1

κξ + 1

κξ + 2
+ 1

h + 1

∞∑
n=1

(
h − 1

h + 1

)n

×
[

1

2n/(κξ ) + 1
+ 1

2(n + 1)/(κξ ) + 1

]
. (21)

When h = 1, Eq. (21) reduces to

L12 = L0
12

(
κξ + 1

κξ + 2

)
. (22)

Clearly, Eq. (22) is an increasing function of κξ .
The electro-osmotic coefficient calculated by Eq. (21) is

plotted as a function of salt concentration in Fig. 2. Shown are
the coefficients for several values of the bulk viscosity param-
eter h. As the salt concentration increases, the electro-osmotic
coefficient increases and approaches L0

12, regardless of h. By
contrast, in the low salt concentration regime, L12 decreases as
(c+

b )1/2 to Lb
12 = L0

12/(1 + h), the electro-osmotic coefficient
estimated at the viscosity of the bulk solution.

We interpret these results as follows. In the neutral poly-
mer solution, the electrostatic interaction does not influence
the polymer concentration profile. The polymers are depleted
from the surface by short-ranged surface forces, and the near-
surface viscosity is smaller than that in the bulk. Only the
region near the surface, where ρ �= 0, responds to the ap-
plied electric field. The charged region is characterized by the
Debye length κ−1 from the surface. If the Debye length is
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FIG. 2. Electro-osmotic coefficients L12 in the solution without polyelec-
trolytes, plotted as functions of salt concentration c+

b . In place of polyelec-
trolytes, electrically neutral polymers are dissolved. The viscosity parameter
h is varied.

smaller than the correlation length ξ , the electro-osmosis is
enhanced; otherwise it is suppressed.

Given the effective viscosity ηS, the electro-osmotic coef-
ficient is calculated by the usual Smoluchowski’s formula, L12

= −εψS/4πηS. As noted above, the formation of the deple-
tion layer near the surface effectively lowers the viscosity of
the solution. From Eq. (21), the effective viscosity decreases
with κξ as

ηS ≈ η0(1 + h)

{
1 − κξ

h

h − 1
ln

h + 1

2

}
, (23)

when κξ � 1, using
∑∞

n=1 n−1rn = ln[1/(1 − r)]. On the
other hand, when κξ 	 1, the viscosity approaches the sol-
vent viscosity, ηS ≈ η0. This phenomenon can be explained
as follows. In the high salt limit, the electrostatic interaction
between ions and walls is screened by a short length scale.
If the wall is chemically repulsive to the polymers, the poly-
mers are depleted from the surface with a correlation length
far exceeding the Debye screening length.

B. Polyelectrolyte solution with electrically attractive
and chemically repulsive surfaces

Next, we consider polyelectrolyte solutions, i.e., f �= 0.
Figure 3(a) shows the electro-osmotic coefficients as func-
tions of salt concentration. Here we fix h = 9 and vary the
fraction of charged monomers f. We find that, as in neutral
polymer solutions (see Fig. 2), electro-osmosis is suppressed
in the low salt regime. At high salt concentrations, the electro-
osmotic coefficient approaches L0

12. Figure 3(a) also indicates
that, with increasing electric charge on the polyelectrolytes,
electro-osmosis becomes more suppressed and salinity exerts
a more drastic effect. In Fig. 3(b), these plots are magnified
around L12 = 0. Interestingly, the electro-osmotic coefficient
can become negative at sufficiently dilute salt and when the
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FIG. 3. (a) Electro-osmotic coefficients L12, plotted as functions of salt con-
centration c+

b . The fraction of charged monomers in the polyelectrolyte f is
varied for fixed h = 9. At f = 0, the curve is that of the electrically neutral
polymer solution, and it increases with c+

b as shown in Fig. 2. At sufficient
salt concentrations, all curves approach L0

12. (b) Magnification of the same
plots around a small range of L12.

polyelectrolytes are highly charged. Such inversion of electro-
osmotic flow is never observed in neutral polymer solutions.

The electro-osmotic coefficients are plotted as functions
of f in Fig. 4(a). Here the salt concentration is fixed at a low
concentration c+

b = 10−6[mol/], and the bulk viscosity pa-
rameter h is changed. We observe that the electro-osmotic
flow is weakened if the polyelectrolytes are highly charged.
The mechanism of this phenomenon will be discussed later.
Figure 4(a) also shows that electro-osmosis inversion oc-
curs only at sufficiently high h. Figure 4(b) plots the electro-
osmotic coefficient versus h for c+

b = 10−6[mol/] and f = 1.
As discussed above, the electro-osmotic flow in neutral poly-
mer solutions saturates at Lb

12 in the low salinity limit, ac-
cording to Eq. (23). However, this equation cannot explain
the curve in Fig. 4(b).

1. Relationship between electro-osmosis
and static properties

Figure 5(a) plots the curves of L12 = 0 and L12 = Lb
12

in a c+
b -f plane. As the bulk viscosity parameter h decreases,

the region of inverted electro-osmosis (L12 < 0) shrinks and
eventually disappears as h becomes small. On the other hand,
the L12 = Lb

12 curves are less sensitive to changes in h. This
implies that L12 around Lb

12 depends more on the static than
kinetic properties.
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FIG. 4. (a) Electro-osmotic coefficients L12, plotted as functions of the frac-
tion of charged monomers in the polyelectrolytes f. h is varied at fixed salt
concentration c+

b = 10−6 mol/. (b) Electro-osmotic coefficient L12 plotted
as a function of h. We set c+

b = 10−6 mol/ and f = 1.
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FIG. 5. (a) State diagram of the electro-osmotic flow in the c+
b -f plane. Be-

cause the polyelectrolyte concentration varies in the slit, the local viscosity
depends on the distance from the wall. Lb

12 is the electro-osmotic coeffi-
cient, estimated from the shear viscosity of the bulk solution. (b) Contours
of the amount of excess adsorption, �, for � = 0, 0.005, and 0.01. Shown are
the contour lines of L12 = 0 (solid) and L12 = Lb

12 (dashed) for h = 9. The
� = 0 contour behaves similarly to the line L12 = Lb

12 in (a).

To characterize the static properties, we define a quantity
� as

� =
∫ L

0
dy(c − cb). (24)

� measures the amount of excess adsorption of the poly-
electrolytes. Figure 5(b) plots the contour lines of � in the
c+

b -f plane. The � = 0 contour characterizes the adsorption-
depletion transition.20 In the system investigated here, the
positively charged polymers are dissolved in the slit between
the negatively charged walls. Electrostatic interaction adheres
the polymers to the oppositely charged wall surface. On the
other hand, intermolecular interaction prevents the polymers
from directly contacting the surface (see Fig. 6(a)). When the
electrostatic interaction is well screened by high salt content,
chemical interaction depletes the polymers from the surface
vicinity.

Interestingly, when c+
b is fixed, excess adsorption does

not continuously increase toward f = 1 but instead peaks at
an intermediate f. As shown in Fig. 5(b), the polyelectrolytes
with c+

b = 10−6 mol/ are most strongly adsorbed when f ≈ 5
× 10−3. This nonmonotonic behavior is counterintuitive

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

polymer order parameter
electrostatic potential

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

polymer order parameter
electrostatic potential

FIG. 6. Profiles of the polymer order parameter φ and the electrostatic
potential ψ near the surface. The bulk concentrations of the salt are (a)
c+

b = 0.0476 [mol/] and (b) c+
b = 2.91 × 10−5 [mol/]. In both cases, the

fraction of charged monomer in the polyelectrolyte is f = 0.03. The profiles
in (a) and (b) correspond to conditions (A) and (B) in Fig. 5(a). For a clearer
representation, we plot φ(y)/15φb and 15ψ(y)/|ψS| rather than φ(y) and ψ(y).

because one expects that highly charged polyelectrolytes will
be adsorbed with greatest strength. The adsorption-depletion
transition has been intensively studied by Shafir et al.20 Com-
paring Figs. 5(a) and 5(b), we find that the curves L12 = Lb

12
roughly coincide with that of � = 0. When the polymers are
adsorbed to the surface (� > 0), the electro-osmotic coeffi-
cient is smaller than that determined by the surface potential
and bulk viscosity Lb

12, and vice versa.
Figure 6 shows profiles of the polymer concentration and

electrostatic potential at (a) high and (b) low salt concentra-
tions. The fraction of charged monomers is f = 0.03. The
solution conditions are as indicated in Fig. 5(a). Under low-
salinity conditions, where L12 < Lb

12, a peak appears in the
concentration profile. Hereafter, the height and the position of
the peak are denoted as φM and yφ , respectively. As shown in
Fig. 5(b), the amount of adsorption is positive (i.e., in excess).
Hence, we refer to the region of φ > φb(= √

cb) as an adsorp-
tion layer, although the polymers themselves do not contact
the surface. The electrostatic potential also peaks at y = yψ .
We call this peak an overcharging potential and its height is
denoted as ψM. We should note that the φ and ψ peaks ap-
pear at different positions, with yψ > yφ . We also define y0,
which satisfies ψ(y0) = 0. As discussed below, the adsorp-
tion layer and the overcharging potential play essential roles
in the decrease and inversion of the electro-osmotic coeffi-
cient. Conversely, under high-salinity conditions, the profiles
monotonically increase to the bulk values without develop-
ing peaks. The dependences of φM and ψM on c+

b and f are
shown in Figs. 7(a) and 7(b), respectively. The contours of
φM and ψM are qualitatively similar to that of L12 in Fig. 5(a)
but are dissimilar from that of the excess adsorption. This im-
plies that the maximum amount of adsorption is not important
in the electro-osmotic phenomena.

The uncolored region, in which the profile does not peak,
almost coincides with that of L12 > Lb

12. The gradient of
the electro-osmotic flow is localized to the range of the De-
bye screening length from the surface (see Fig. 8(a)). There-
fore, the formation of the depletion layer effectively reduces
the solvent viscosity. Because the electro-osmotic flow is in-
versely proportional to the viscosity, depletion enhances the
electro-osmosis. At the adsorption-depletion transition, the
increase in L12 caused by the depletion cancels the decrease
caused by adsorption. Then, the � = 0 curve is roughly

phiM
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FIG. 7. Effect of c+
b and f on the peak heights of (a) concentration profile

φM and (b) electrostatic potential ψM. Shown are the contour lines of L12
= 0 (dashed) and L12 = Lb

12 (solid) for h = 9. The dotted line is L12 = 0
estimated by Eq. (30). Uncolored regions indicate where no peaks appear in
φ and ψ (i.e., where φM and ψM are undefined).
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FIG. 8. (a) Profiles of the electro-osmotic flow λ12 in three states: (A)
depletion state: c+

b = 0.0476 mol/ and f = 0.03; (B) adsorption state:
c+

b = 2.91 × 10−5 mol/ and f = 0.03; (C) flow inversion state: c+
b = 2.91

× 10−5 mol/ and f = 0.46. These conditions are marked in Fig. 5(a). In
condition (C), the overcharging potential is ψM/|ψS| ≈ 0.1. (b) Parametric
representations of ψ(y) and 1/η(φ(y)) for the three states. Points (ψ /|ψS|,
η0/η) = ( − 1, 1) and (ψ /|ψS|, η0/η) = (0, 1/(1 + h)) correspond to the sur-
face (y = 0) and bulk (y = L), respectively. The bulk viscosity parameter is
fixed at h = 9.

consistent with that of L12 = Lb
12. Because neutral polymers

in solution do not adhere to the surface, electro-osmosis is
more strongly suppressed in polyelectrolyte solutions than in
neutral polymer solutions.

The uncolored region in Fig. 7(b), where ψM develops
no peak, is slightly wider than that in Fig. 7(a), where φM

develops no peak. This difference is delicate because the
Debye screening length becomes comparable to the system
size when c+

b and f are very small.

2. Relationship between electro-osmosis
and dynamical properties

As shown in Fig. 7, φM and ψM are large in the regime
of large f and small c+

b , where the electro-osmotic coefficient
becomes negative. We emphasize that these large values of
φM and ψM are essentially important for the sign reversal of
L12.

Figure 8(a) shows the profiles of the flow field near
the surface under three conditions. Here we note that vx(y)
= λ12(y)E. Conditions (A) and (B) correspond to the ad-
sorption and depletion states, respectively. The global electro-
osmotic coefficient L12 becomes negative under condition (C).
These conditions are marked in Fig. 5(a). In all cases, the gra-
dient of the flow field is localized to the vicinity of the surface;
that is, the flow macroscopically behaves as a plug flow. While
curve (A) varies almost monotonically with y, curve (B) is
nonmonotonic, and curve (C) is more complex. Under con-
dition (C), the flow direction is positive near the surface, but
changes at some distance from the wall, saturating at a nega-
tive value. The saturation value gives the macroscopic electro-
osmotic coefficient from Eq. (15). By contrast, curve (B)
remains positive across the range. If the viscosity is homoge-
nous and independent of the polymer concentration, the flow
field is easily calculated from Eq. (14) as

λ12(y) = ε

4πη
{ψ(y) − ψS} . (25)
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FIG. 9. (a) Schematic for calculating L12 in adsorption states from Eq. (27).
ψ and 1/η are parameterized with respect to y. (b) Approximate represen-
tation of ψ-η−1 in (a). This approximation gives a simple form of L12,
Eq. (30).

The overcharging potential is necessary the nonmonotonic
variations in (B) and (C). However, because ψS < ψ(y) ev-
erywhere, the overcharging potential alone cannot explain the
negative L12 given that η is constant.

If the electrostatic potential monotonically changes with
y as in condition (A), ψ = ψ(y) is uniquely expressed by its
inverse function y = y(ψ). Then, Eq. (14) is given by

λ12(L) = ε

4π

∫ 0

ψS

η(ψ ′)−1dψ ′, (26)

where η(ψ) = η(φ(y(ψ))) is also a unique function of ψ . The
curves of η(ψ) are plotted in Fig. 8(b). Since η(ψ) is positive,
λ12(L) is also positive, indicating that the flow toward E is
maintained.

When the overcharging potential arises, as in conditions
(B) and (C), y is a multivalued function of ψ , which invali-
dates Eq. (26). In this case, Eq. (14) becomes

4π

ε
λ12(L) =

∫ yψ

0

dy ′

η(y ′)
∂ψ

∂y

∣∣∣∣
y ′

+
∫ L

yψ

dy ′

η(y ′)
∂ψ

∂y

∣∣∣∣
y ′

=
∫ ψM

ψS|y<yψ

dψ ′

η(ψ ′)
−

∫ ψM

0|y>yψ

dψ ′

η(ψ ′)
. (27)

Here we should note that the paths of the two integrals in
Eq. (27) differ from each other.

According to linear analysis, the electrostatic potential
profile may have multiple peaks.17 The intensities of the peaks
decay with increasing distance from the wall. We assume that
the highest peak (nearest the wall) plays a dominant role in
the electrokinetic flow and ignore the contributions of the re-
maining peaks.

Figure 9 is a schematic of Eq. (27). When the electrostatic
potential overcharges, the curve of 1/η(ψ) is divisible into
three segments. These segments delineate three realms, with
areas denoted by S1, S2, and S3. Within the slit, the realms
correspond to the ranges S1: 0 < y < y0, S2: y0 < y < yψ , and
S3: yψ < y < L (see Fig. 6(b)). The first and second terms in
Eq. (27) are given by S1 + S2 and S2 + S3, respectively. In
terms of these areas, the electro-osmotic coefficient is given
by L12 = (S1 + S2) − (S2 + S3) = S1 − S3. If S1 < S3, the
macroscopic flow is inverted.

Using Eq. (27), we devise a simple method for esti-
mating the electro-osmotic coefficient in adsorption states.
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The viscosity is assumed constant within each realm. More
precisely, we assume that polymer concentration is fixed at
φ = φM within the range 0 < y < yψ and at φ = φb in yψ < y
< L. These approximations are schematically represented in
Fig. 9(b). S1 and S3 are then approximated as

S1 ≈ ε

4π

−ψS

ηS
, (28)

S3 ≈ ε

4π

(
1

ηb
− 1

ηS

)
ψM, (29)

where ηS = η0(1 + hφM/φb) and ηb = η0(1 + h). Finally, we
obtain

L12 ≈ ηb

ηS
Lb

12 +
(

1 − ηb

ηS

)
LM

12, (30)

where LM
12 = −εψM/(4πηb) is the electro-osmotic coefficient

estimated by the overcharging potential. The L12 = 0 curve
estimated by Eq. (30) is drawn in Fig. 7. This curve is qual-
itatively consistent with the numerical solutions. In this es-
timation, the overcharging potential does not directly cause
the inversion of electro-osmotic flow; formation of the highly
viscous layer is also important.

V. SUMMARY AND REMARKS

Applying a continuum model, we study electro-osmosis
in polymer solutions. From numerical calculations and theo-
retical estimations, we elucidated the behaviors of the electro-
osmosis in polymer solutions. The dependence of viscosity
on the polymer concentration plays an important role in our
model. Our main results are summarized below.

(i) Even if the polymer solution sandwiched between chem-
ically repulsive walls is electrically neutral, electro-
osmosis depends on the salt concentration. Decreasing
the salinity suppresses the electro-osmosis.

(ii) In polyelectrolyte solutions, the formed adsorption layer
effectively enlarges the viscosity in the vicinity of the
surfaces. Consequently, electro-osmosis is suppressed
much more strongly in polyelectrolyte than in neutral
polymer solutions. If a sufficiently high proportion of
the monomers are charged and if the salt concentration is
sufficiently low, the electro-osmotic flow can be inverted.

(iii) We propose a simple equation for estimating the electro-
osmotic coefficient in adsorption states (Eq. (30)). This
equation captures the essential features of the inversion
of the electro-osmotic coefficient, shown in Fig. 7. Ac-
cording to this expression, inversion is caused by two
factors: enhancement of the viscosity by the near-surface
adsorption layer and overshoot of the electrostatic
potential.

We conclude this paper with the following remarks.

(1) Charge inversion and mobility reversal induced by
multivalent electrolytes has been frequently reported.29

Grosberg et al.29 concluded that such phenomena de-
pend on fluctuation correlations among the multivalent
ions, which are excluded in usual Poisson-Boltzmann

approaches. Our mean-field approach predicts that simi-
lar inversion phenomena occur in polyelectrolyte solu-
tions. According to a molecular dynamics simulation,
the phenomena occurs even in monovalent ions solutions
confined within nanochannels.30 The flow profiles ob-
tained in the earlier study are quite similar to ours; near
the surface, the flow is directed toward the electric field,
but in the bulk, it is against the field.

(2) This article considers only limited situations. The sur-
faces are assumed to chemically and electrostatically
repel the polymers. If the surfaces are chemically at-
tractive, the adsorption is much enhanced by chemical
forces.19, 21 The electro-osmotic properties of these sur-
faces are equally interesting and important.

(3) From the Onsager reciprocal relations, the electro-
osmotic coefficient L12 should equal L21 in Eq. (2). The
latter represents the electric current due to the mechani-
cal pressure difference. Interestingly, the Onsager coeffi-
cient L21 is inverted when f is large and c+

b is sufficiently
small.

(4) In the above numerical and theoretical analyses, the
viscosity parameter h is assumed constant, although in
practice it depends on the fraction of charged monomers
f and the salt concentration c+

b . When f is large and c+
b is

small, the solution viscosity increases (see Appendix B).
Our studies indicate that large f and small cb favor flow
inversion. The same trends were observed for large h. If
we set h as a function of f and cb, more dramatic changes
would appear in the curves of L12 against f and c+

b . Al-
though the L12 and the phase diagrams would quantita-
tively alter, the qualitative trends, i.e., suppression of the
electro-osmotic flow and inversion at large f and a small
c+

b , should remain intact.
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APPENDIX A: LOCAL EQUILIBRIUM CONDITIONS
FOR THE COMPONENTS

Because we apply an external field E along the x direc-
tion (see Fig. 1), the total electrostatic potential is not ψ(y)
in Eq. (6), but instead is �(x, y) = ψ(y) − Ex. Assuming the
local equilibrium condition, the chemical potential of the ith
species is given by

μi = kBT ln(cia3) + ezi�, (A1)

where zi is the charge of the ith ion. In the geometry of the
investigated system, the diffusion flux of the ion, given by
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j i = −Dici∇μi , is divided into two components:

j i = j i
yey,+j i

xex, (A2)

j i
y = −Dic+ ∂

∂y
[kBT ln(cia3) + eziψ(y)], (A3)

j i
x = Dizic

iE. (A4)

Here, Di is the diffusion constant of the ith ion, and ex and
ey are the unit vectors along the x and y axes, respectively.
Because the system is confined by the walls at y = 0 and 2L,
the diffusion flux along the y direction vanishes at steady state.
Thus, we obtain the Boltzmann distribution along the y axis as
cia3∝exp { − zieψ /kBT}. On the other hand, the diffusion flux
remains along the x axis. Because the applied electric field is
sufficiently weak and orthogonal to −∇ψ , it influences nei-
ther the concentration fields nor the polymer conformation.

APPENDIX B: SCALING BEHAVIORS
IN POLYELECTROLYTE SOLUTIONS

The scaling behaviors of polyelectrolyte solutions are
known to widely differ from those of uncharged polymer so-
lutions. At the overlap concentration c∗ in a polyelectrolyte
solution, the monomer density inside the coil equals the over-
all monomer density in the solution.28 In our notation, the
overlap concentration in a theta solvent is determined by
c∗(1 + 2c+

b /c∗f )−3/2 ≈ N−2a−2−1
B f −2.

In the low-salt or salt-free regime, the overlap concen-
tration becomes c* ≈ (a2BNf)−1. Conversely, it approaches
c∗ ∼= {8(c+

b )3a−4−2
B f −7N−4}1/5 in the high-salt regime.

Between these two extremes, the overlap concentration
decreases as f increases. Given the same polymer length
N, polyelectrolyte chains expand more than their uncharged
counterparts.

The viscosity of polyelectrolyte solutions also obeys
scaling behaviors, which depend on the solvent quality and
the polymer concentration regime. For example, the viscos-
ity of a semidilute solution in a theta solvent is given by
η ≈ η0Na

1/2
B f c1/2(1 + 2c+

b /f c)−3/4. If the salt is not dis-
solved or is insufficiently dilute, this expression approaches

η ≈ η0Na
1/2
B f c1/2; that is, the viscosity is proportional to

c1/2 (Fuoss law). On the other hand, in highly saline conditions
the viscosity behaves as η ≈ η0Na

1/2
B (c+

b )−3/4f 7/4c5/4. The
viscosity depends on the polymer concentration as c5/4, identi-
cal to that of an uncharged polymer solution in a theta solvent,
namely η ≈ η0N(ca3)1/(3ν−1) with ν = 3/5. Physically, this re-
sult implies that electrostatic interactions in a polyelectrolyte
solution are well screened by the salt.
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